Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37761548

RESUMO

Shortcuts to adiabaticity (STA) are relevant in the context of quantum systems, particularly regarding their control when they are subjected to time-dependent external conditions. In this paper, we investigate the completion of a nonadiabatic evolution into a shortcut to adiabaticity for a quantum field confined within a one-dimensional cavity containing two movable mirrors. Expanding upon our prior research, we characterize the field's state using two Moore functions that enables us to apply reverse engineering techniques in constructing the STA. Regardless of the initial evolution, we achieve a smooth extension of the Moore functions that implements the STA. This extension facilitates the computation of the mirrors' trajectories based on the aforementioned functions. Additionally, we draw attention to the existence of a comparable problem within nonrelativistic quantum mechanics.

2.
Entropy (Basel) ; 25(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36673292

RESUMO

We study a stochastic version of the dynamical Casimir effect, computing the particle creation inside a cavity produced by a random motion of one of its walls. We first present a calculation perturbative in the amplitude of the motion. We compare the stochastic particle creation with the deterministic counterpart. Then, we go beyond the perturbative evaluation using a stochastic version of the multiple scale analysis, that takes into account stochastic parametric resonance. We stress the relevance of the coupling between the different modes induced by the stochastic motion. In the single-mode approximation, the equations are formally analogous to those that describe the stochastic particle creation in a cosmological context, that we rederive using multiple scale analysis.

3.
Entropy (Basel) ; 25(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36673159

RESUMO

The development of quantum technologies present important challenges such as the need for fast and precise protocols for implementing quantum operations. Shortcuts to adiabaticity (STAs) are a powerful tool for achieving these goals, as they enable us to perform an exactly adiabatic evolution in finite time. In this paper, we present a shortcut to adiabaticity for the control of an optomechanical cavity with two moving mirrors. Given reference trajectories for the mirrors, we find analytical expressions that give us effective trajectories which implement an STA for the quantum field inside the cavity. We then solve these equations numerically for different reference protocols, such as expansions, contractions and rigid motions, thus confirming the successful implementation of the STA and finding some general features of these effective trajectories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...